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Abstract. This paper presents a new allograph extraction method. The proposed technique is based on two 
clustering phases. First, a rough clustering of handwritten data is made taking into account both characters’ 
global and local information. Next, the clustering is refined in order to obtain clusters of characters belonging 
to the same allograph that is finally computed. Experiments on allograph extraction made using characters 
from UNIPEN international database yield an allographs per character rate up to 7,2 in upper-case characters. 
The quality of allographs is also tested using them to initialize a handwriting recognizer achieving an average 
recognition rate of 90,15%. 

 
1. Introduction  
Occidental written languages use alphabets consisting of small sets of characters (e.g. the English alphabet has 26 
letters). However, most characters may be written using more than one different shape or model. These models 
are called allographs (Parizeau & Plamondon, 1995) (Duneau & Dorizzi, 1994). For example, the letter {a} can 
be written in several different ways, such as an upper-case, a block printed, or a cursive variant. Those variants 
are different character allographs for the character concept {a}. The writer can generate different instances of a 
given allograph. These can be considered as a degradation of the allograph that resembles more or less accurately 
to the original model depending on the writer’s skill and assiduity. 

The aim of allograph extraction methods is to retrieve allographs from a collection of character instances, i.e. 
to identify the different models of a character concept. In terms of pattern recognition, allograph extraction can 
also be seen as the detection of cluster prototypes (Jain et al., 2000). On the contrary, handwriting recognition 
consists in labeling character instances in order to get the character concept from the instance by directly or 
indirectly identifying its allograph. Thus, allograph extraction and handwriting recognition are closely related. 
Figure 1 illustrates all these ideas. 
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Figure 1: A conceptual model that relates generation and recognition processes through allographs. 

Within this framework, allograph extraction can be used for several purposes. First, it can help to formalize 
the study of the different handwriting styles used by humans according to several factors like age or culture 
(Plamondon & Srihari, 2000). In addition, the relation between allographs and character instances is an important 
point for the research on handwriting generation (Parizeau et al., 1995) (Duneau et al., 1994). Finally, the 
construction of a small size dictionary of allographs that may also be human understandable can be useful for the 
development of new on-line handwriting recognition architectures (Teulings & Schomaker, 1992).  

Given this background, a new allograph extraction method is proposed in this paper. This method tries to 
retrieve allographs by first identifying clusters of instances, and then extracting a cluster prototype. This process 
is performed in two stages. First, neural networks are employed to carry out a supervised clustering made 
according to classification criteria. Then, clustering is refined grouping character instances that were possibly 
generated by the same allograph. In addition, a new on-line handwriting recognition system is proposed. This 
system uses the extracted allographs as initial knowledge in order to compare the allographs to other sources of 
initialization for a recognizer. 

The organization of this paper is as follows. Section 2 first describes the system used to carry out the 
allograph extraction procedure. Next, Section 3 presents the numeric results achieved by the allograph extraction 
method using isolated letters from a multi-writer database; the reconstruction of the allographs extracted for the 



character {Ø} is also shown and discussed as an example. Section 4 tries to validate the obtained allographs as a 
source of knowledge by comparing the recognition rates achieved by a system initialized with the already 
mentioned allographs and some other well-known initialization methods. Finally, in Section 5 conclusions and 
current research are discussed. 
 
2. Description of the allograph extraction method 
If characters instances are represented using feature vectors, and these features are discriminant, these vectors 
will spread along the feature space forming separate clouds. Each cloud can be seen as a cluster of character 
instances around a prototype that in turn can be considered the generating allograph. Thus, the more the character 
instance resembles to the allograph, the smaller the distance between the instance and the allograph vectors will 
be. If the allograph is the description of an average character, it can be represented by the mean of the instance 
vectors belonging to the cluster. The use of the mean to compute the allograph assures the minimization of the 
distance between the model vector and the whole of instance vectors employed for its calculation (Devijver & 
Kitler , 1982).  

Allograph extraction can therefore be performed in two stages: first, instances are grouped in clusters that 
serve for classification purposes, i.e. all instances within a cluster represent the same character concept. The 
number of groups created depends only on classification needs, i.e. the proximity of instances of a different 
character concept, and therefore each of these clusters may contain instances generated following one or more 
different character allographs. A second clustering is thus performed, starting from the existing clusters, but 
based on the search of clouds of instances instead of on classification criteria. These two steps are shown in 
Figure 2.  
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Figure 2: Block diagram of the allograph extraction method. 

Prior to allograph extraction, raw handwriting data are first preprocessed and segmented into strokes 
according to the methods described in (Gómez-Sánchez et al., 1998) and then coded into feature vectors. The 
character feature vectors are made up by seven features of each character’s stroke (mean x-coordinates value, 
mean y-coordinates value, sine and cosine of the three phases defined by three segments approaching the stroke, 
length and a sequential feature showing whether the stroke starts and/or ends a component or is inside the 
component) and a character’s global feature (character’s height and width ratio).  
 
2.1 Supervised clustering stage 
A rough division of the feature vectors is made in the initial clustering stage using Fuzzy ARTMAP (Carpenter et 
al., 1992) neural networks. The training is made setting design parameters ρ =0 and β =1 and carried out until 
null prediction error on the training data is reached. Since the number of strokes is not fixed, feature vectors are 
processed by a different neural network depending on their number of strokes. 

After training, the n-stroke network will have created a number of hyperboxes in the n-stroke feature space. 
All instances within a given hyperbox have the same label, unless also contained by a smaller hyperbox.  
Sometimes zero volume hyperboxes containing just one feature vector are found. These hyperboxes are usually 
produced by noisy or extraneous samples, and thus are rejected prior to finding out the final allographs in the 
next stage. The output groups are thus made by the feature vectors activating the same hyperbox.  
 
2.2 Final clustering stage 
Previous stage produces groups of instance vectors according to classification criteria. However, these groups 
may enclose instances stemming from different allographs. To correct this, another clustering stage proceeds 
redistributing the instances within previously determined hyperboxes and identifying the generating allographs.  

The second clustering stage incrementally builds the allograph lexicon from the existing hyperboxes. For 
each iteration, a number of permanent allograph exists, as well as a candidate allograph that can vary until it 
becomes permanent. 

Initially, only one permanent allograph exists: it is calculated as the mean of the vectors clustered in the 
smallest hyperbox, i.e. this will be the most specific allograph. 



Afterwards, the next hyperbox in ascending order of size is selected, so that its patterns can be used to create 
new allographs. In order to do this, one vector among them is randomly selected as a candidate allograph. Then, 
all the patterns closer to this candidate than to any other existing allograph can be said to have been generated by 
the current candidate allograph, that in turn can be recalculated again as the mean of all these vectors. Because of 
the random choice of the initial candidate, its new value can differ significantly. Therefore, all patterns in the 
processed hyperbox are newly assigned to the closest allograph, permanent or candidate, and another more 
precise value for the candidate allograph is calculated. Eventually, this process stops when the variation between 
two successive values for the candidate allograph is small. When this occurs, the allograph becomes permanent 
and it is added to the allograph lexicon. 

However, it may well happen that not all vectors in the processed hyperbox select (are closer to) the newly 
generated allograph. If some vectors remain, they are closer to another already existing allograph that may have 
the correct label associated. If however they are closer to an allograph with a different class label, it means that a 
new allograph should be created. This new allograph can be seen as the generator of another “cloud” of character 
instances that significantly differ from others describing the same character concept. 

To calculate this new allograph, a vector is randomly selected among the remaining patterns of the hyperbox 
being processed. The allograph is then refined through the same iterative process described above, until it 
becomes a permanent allograph. The process continues, so that even more than two allographs could actually be 
extracted from a given hyperbox. 

When all the patterns in a given hyperbox are finally processed, the next larger hyperbox is then taken. The 
procedure continues until all existing hyperboxes have been processed. Therefore, this algorithm starts from very 
specific allographs, continuing to more general ones, while also increasing the generality of those already 
computed. 

In addition, processing the groups of feature vectors in ascending order of the size of their associated 
hyperboxes allows to deal first with compact hyperboxes that contain only one cloud of vectors (i.e. one 
allograph). Since larger hyperboxes are processed later, they may contain some of the previous hyperboxes, and 
thus already generated allographs. The detection of instances belonging to the same group and laying in both 
sides of a previously computed allograph lets us determine the existence of different allographs within the group. 

A step-by-step description of this algorithm can be found in Appendix A. 
 
3 Allograph extraction results 
The proposed allograph extraction method has been evaluated on the UNIPEN (Guyon et al., 1994) data sets, 
using versions 2 and 7. This ensures a large amount of data, author-independence and comparability to other 
systems. The test was carried out independently using three different sets of isolated characters of both versions: 
digits, upper-case letters and lower case letters. The number of labels used in each set is 10, 26 and 26 
respectively according to the English alphabet. Every set was divided in two subsets of the same size warranting 
the presence of samples by any writer in both of them. The first subset was used to perform the allograph 
extraction experiments and to train the character recognition systems. The second was only used in the 
recognition experiments.  

The number of networks employed in the system is set to 6 for digits and upper-case letters experiments and 
to 7 in lower-case letter. Characters having a larger number of strokes are considered as segmentation errors due 
to the preprocessing stage. However, the number of bad-segmented characters was never more than the 0,2% of 
the total amount of data used for the test. 

Figure 3 shows an example of the allographs extracted for the character {Ø} (zero) from UNIPEN version 2 
data set. Allographs in Figure 3 are sorted by the number of strokes; first row contains one-stroke allographs, 
second contains two-stroke allographs, etc. The system extracted 16 allographs including the two allographs 
expected a priori: the normal zero (0) and the slashed zero (Ø). Most of the allographs extracted are perfectly 
recognizable at first glance. 

It is noteworthy that a number of allographs correspond to similar graphical representations of the characters, 
but to different ways of generation. For example, the first and the last two-stroke zeros have been made following 
the same model {Ø}; however, they have been drawn clockwise and counterclockwise respectively. This fact 
clearly relates allographs to the studies on handwriting generation. 

It can be seen that the same execution of the same allograph is found for different number of strokes. 
Therefore, the segmentation method should be revised, since ideally all instances generated from a given 
allograph should have been segmented into the same number of strokes. On the other hand, very similar 
allographs are sometimes identified having the same n-stroke segmentation. The improvement of the proposed 
clustering methods could overcome this problem. Finally, it must be said that the example shown and discussed 
here is one of the worst cases found for the version 2 digits data set experiments results. 



 
Figure 3: Reconstruction of the allographs extracted for the '0' digit of the version 2 UNIPEN data set. The arrows mark the 

beginning of the characters’ first stroke. Segmentation points are marked using a cross. 

The numeric results of the allograph extraction tests are shown in Table 1. The number of allographs per 
character found for version 2 digits and upper-case letters seems to be reasonable, although it could be improved 
by the elimination of the repeated allographs, as discussed in previous paragraph. This number increases for 
lower-case letters in version 2 given their greater variability. Allographs per character rates also increase for 
version 7 tests. This is due to the larger amount of data. It can also be observed that the total number of 
allographs extracted for version 7 sets is larger than for those of version 2. Ideally, the system should extract the 
same number of allographs regardless of the number of instance vectors used. However, the number of extracted 
allographs achieved is low enough to deal with, and may allow the definition of an allographs’ dictionary. 
 

  Version 2   Version 7  
 Digits Upper-case 

letters 
Lower-case 

letters 
Digits Upper-case 

letters 
Lower-case 

letters 
Number of instance vectors 1916 2109 6100 7245 12105 23710 
Number of allographs 108 186 558 278 723 1577 
Allographs per character ratio 10,8 7,2 21,5 27,8 27,8 60,7 

Table 1: Results of the allograph extraction test. 

4 Recognition results using extracted allographs 
In the previous section, a qualitative discussion on the quality of the extracted allographs was made. However, if 
the extracted allographs are used as knowledge employed to initialize a handwriting recognizer, the achieved 
classification rates can be considered a quantitative approach on the evaluation of the allographs’ quality. 

Since the allographs, as constructed here, are prototypes close to training instances, it seems reasonable to 
apply recognizers based on the comparison of distances between prototypes and test instances. For this purpose, 
LVQ codebooks (Kohonen et al., 1995) can be used, existing other initialization methods that can be used for 
comparison purposes. 

The handwriting recognizer thus employed consists of a series of LVQ codebooks (Kohonen et al., 1995). A 
different codebook is employed to classify the characters according to their number of strokes. Three different 
methods were used to initialize the LVQ codebooks. The first one simply takes the extracted allographs as the 
initial codebook vectors to be trained later. The other two methods, called propinit and eveninit (Kohonen et al., 
1995), choose randomly the initial codebook entries from the training data set, making the number of entries 
allocated to each class be proportional or equal, respectively. The number of initial entries must be set a priori 
for the propinit and eveninit initialization methods. In order to make the comparisons as fair as possible the 
number of initial vectors for each codebook and data set was fixed to the number of allographs with the 
corresponding number of strokes extracted from the same data set. In all cases, the OLVQ1 algorithm (Kohonen 
et al., 1995) was employed to carry out the training.  

Two different experiments have been made using the three initialization methods already mentioned with the 
different data sets. First, the system was tested without any kind of training. Second, the test was carried out after 
training the recognizer. The chosen training lengths were always 40 times the total number of codebook vectors. 



The initial value of the parameter α was set to 0,3 for all codebook entries. The achieved results are shown in 
Table 2. 

  Version 2   Version 7  
 Digits Upper-case 

letters 
Lower-case 

letters 
Digits Upper-case 

letters 
Lower-case 

letters 
Number of training vectors 1916 2109 6100 7245 12105 23710 
Number of test vectors 1917 2109 6101 7242 12104 23714 
No train. allograph init. recog. Rate 92,80 86,96 83,87 91,12 87,28  83,53 
No train. propinit init. recog. Rate 75,85 70,65 67,30 83,97 75,78 75,50 
No train. eveninit init. recog. Rate 75,74 58,04 65,25 79,51 70,86 70,63 
Allograph initialization recog. Rate 93,84 87,81 86,76 95,04 89,68 87,76 
Propinit initialization recog. Rate 88,47 78,38 76,71 89,23 80,92 83,49 
Eveninit initialization recog. Rate 85,08 73,11 75,40 89,42 80,02 82,28 

Table 2: Results of recognition experiments using different initialization methods. 

It is noteworthy the fact that achieved recognition rates employing the allograph initialization before training 
the system are significantly higher than using the propinit and eveninit methods in all cases. This is because the 
codebook entries set by the allograph initialization method are found in the middle of every cluster. On the 
contrary, the propinit and eveninit methods, given its random nature, do not assure the existence of an entry in 
every cluster found nor the placement in the middle of the cloud. 

This conclusion is supported by the results of the second experiment. The recognition rates using allograph 
initialization increase slightly after carrying out the training. Since the allographs are computed as the mean of 
the cluster vectors, the initial codebook vectors are already quite well placed from the classification point of 
view. The training just contributes to refine the allograph positions in order to minimize the classification error. 
The increase of recognition rates after training using propinit and eveninit initialization methods is much higher. 
In this case, the training phase moves the codebook entries towards more suitable positions in the future space 
according to classification criteria. However, the obtained recognition rates are still lower than using the 
allograph initialization. This is again because there will not always be an entry placed in every cluster found in 
the training data. 

A new experiment can be made in order to both have a measure of the allographs’ quality and try to decrease 
the proliferation of allographs. The experiment consists in successively removing the allographs having the 
smaller number of character instances related to them. The recognition system is initialized using the remaining 
allographs and then trained following criteria mentioned previously. A comparison with the propinit and eveninit 
methods can be made too if we use these methods to initialize the system setting the number of initial codebook 
vectors to the number of remaining allographs. 

This experiment has only been made for version 7 lower-case letters, the most difficult case from the 
classification point of view. Removing the allographs representing ten or less instances reduces the number of 
models from 1577 to 297 while the recognition rate decreases from 87,76% to 81,66%. If the test is carried out 
using 297 initial codebook entries generated by the propinit and eveninit algorithm, the achieved recognition 
rates are 70,22% and 62,22% respectively. The decrease observed is thus more significant. 

Finally, it must be remarked that the proposed handwriting recognition system based on allograph 
initialization shows a good performance. This point can be confirmed by comparing the recognition rates with 
those achieved with the recognition system presented in (Gómez-Sánchez et al., 2001). The best recognition rates 
on similar version 2 data sets using a neuro-fuzzy classifier are 85,5%, 76,39% and 59,57% for digits, upper-case 
letters and lower case letters respectively. All these marks are exceeded by the system presented in this paper.  
 
5 Conclusions 
The study of allograph extraction methods may be considered of interest for three main reasons. First, it may help 
to tackle the study of handwriting styles. Second, establishing the relationship between character instances and 
allographs may also help to advance in the field of handwriting generation comprehension. Third, the 
construction of a small size allographs’ dictionary is a desirable objective  

This paper has presented a new method for the extraction of allographs from isolated handwritten characters. 
This is achieved by identifying clusters of character instances and then extracting a prototype for them. This 
prototype is calculated as the mean of the instances. With this approach, instances can be seen as a degradation of 
the allograph. The proposed system identifies the clusters, and thus the allographs, in two stages. In the first one, 
clustering is performed according to a classification method. In the second, a refinement of previous clusters is 
made, and allographs are finally extracted.  

This method has been validated on the UNIPEN handwriting database, showing that a reasonable number of 



allographs can be extracted from a large multi-writer amount of samples. Furthermore, the number of extracted 
allographs is affordable to build a lexicon, though reducing this number would be a desirable objective. The 
observation of reconstructed allographs shows that repeated allographs are found thus producing a proliferation 
problem. The improvement of the preprocessing stage and of the clustering algorithm should eventually 
overcome this problem. The quality of the extracted allographs has also been validated by their use for the 
initialization of a LVQ classifier. Experiments show that allographs provide much more initial knowledge than 
other existing initialization methods. Besides, the character recognizer yields better recognition results than 
others previously reported in literature. 

 
Appendix A 
Let R1, R2, ..., RN be the hyperboxes created in the supervised clustering stage sorted in size so that 
|R1|<|R2|,...,<|RN|. Let r be an index indicating the hyperbox being processed. The vectors associated to hyperbox 
Rr are denoted ιr={v1

r,v2
r,...,vMr

r}. Let Τ denote the collection of allographs, initially empty, i.e. Τ=∅. Then, 
Step 1- Take r=1 (the smallest hyperbox is processed first), and compute the first allograph a1 as the mean of 
the vectors related to R1. 
Step 2- Select next category in size, i.e. r=r+1. Mark all vectors in ιr as not related to any allograph. 
Step 3- Select any random vector from those in ιr not related to any allograph, and let it be the candidate 
allograph ac. 
Step 4- Compute the distances from every vector vi

r to ac and all other allographs in Τ. 
Case a- Vector vi

r is closer to ac than to any other allograph; or vector vi
r is closer to some permanent 

allograph aj than to ac but ||ac- vi
r ||<||ac-aj|| and aj has different label as hyperbox Rr, then mark vector vi

r 
as related to allograph ac. 
Case b- Vector vi

r is closer to some permanent allograph aj than to ac and allograph aj has the same 
associated label as hyperbox Rr  then mark vector vi

r as related to allograph aj. 
Case c- Vector vi

r is closer to some permanent allograph ak than to ac, allograph ak has different 
associated label as hyperbox Rr and  ||ac- vi

r ||>||ac-aj||, then do not relate vector vi
r to any allograph. 

Step 5- Compute a new value for allograph ac as the mean of all vectors in ιr associated to it. If ac
old is the 

previous value of this allograph, then 
Case a- ||ac-ac

old||>θ mark all vectors in ιr as not associated to any allograph, and go to Step 4. 
Case b- ||ac-ac

old||<θ remove all vectors associated to ac from ιr. If ιr still contains vectors, and they are 
not related to any allograph, go to Step 2 to process next category. Otherwise, go to Step 3 to process 
the remaining vectors in ιr.  
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